
Java/Domino 4.6, Bob Balaban

Page 4-1

Chapter 4

NOI Part 3: Item, RichTextItem,
RichTextStyle, EmbeddedObject,
DateTime, DateRange

This chapter goes into more detail about the classes relating to data values and data

types, with a fair amount of attention paid to rich text and embedded objects.

The lotus.notes.Item Class

The Item class is where we really start to get nitty gritty about data values, since it is the

set of Items in a Document that really hold all the data. NOI considers an Item's value to

be an attribute of the Item, so most of the calls in the Item class are properties. I've

arranged the set of properties into two groups: value properties and attributes. You'll

see what I mean.

Item Value Properties

These calls are equivalent to the Document.getItemValueXXX() calls.

java.util.Vector getValues()

void setValues(java.util.Vector)

Unlike column values or view lookup keys, Items that contain multiple values are

always homogeneous with respect to data type. Thus, an Item that contains a text list

cannot also contain a number, and vice versa. The Values property is how you access all

the values of an Item at one time. The getValues() call always returns a Vector, even if

there is only a single value. The setValues call always takes a Vector as input, even if

you have put only one value in it. Use the standard Vector methods to discover how

many values there are (Vector.size()), and to iterate through them.

String getValueString()

Java/Domino 4.6, Bob Balaban

Page 4-2

void setValueString(String text)

These calls allow you to retrieve and set text values for an Item. If you call

getValueString() on an Item that contains another data type, NOI will attempt to coerce

the value to a String for you. If you call setValueString() on an Item that contains a

value of a different data type, then that value is replaced and the type of the Item is

changed to text. If there is no value, or if the value cannot be coerced, a null is returned.

double getValueDouble()

void setValueDouble(double value)

Like the String version of this property, it attempts to coerce the value type on the read

side, and overwrites any existing value type on the write side. If the value type cannot

be coerced, a 0 is returned.

int getValueInteger()

void setValueInteger(int value)

As with Strings and doubles, the Integer version of the Value Property coerces on

retrieval (if possible). If the value cannot be coerced, a 0 is returned.

lotus.notes.DateTime getDateTimeValue()

void setDateTimeValue(lotus.notes.DateTime)

Notes stores DateTime values internally as numbers, so we added a special property to

retrieve a date value as a DateTime object. This is really only useful when you already

know that the Item contains a DateTime value, or when you want to set an Item to a

DateTime value regardless of what data might have been stored there before. If you ask

for a DateTime object from an Item that does not contain a date/time value, then a

null is returned.

DateTime values are pretty much useless represented as numbers, because unlike in

LotusScript, where date values are double precision numbers, Notes uses its own

internal format, composed of two 4-byte integer values, one for date and one for time

Java/Domino 4.6, Bob Balaban

Page 4-3

(some of the bits are actually allocated to a Daylight Savings Time flag and to a time

zone id).

Item Attributes

lotus.notes.DateTime getLastModified()

Returns the date and time that the Item was last modified within the Document. The

Item level information on modification is updated when the Document is saved, not

when the in-memory value is modified. Thus the Item's LastModified property can

never be later than the Document's, although different Items in the same Document can

have different LastModified values. If the Document is new (has never been saved),

then this call returns null.

This is the property Notes uses to implement field level replication.

String getName()

Returns the name of the Item. All Items have a name.

lotus.notes.Document getParent()

Returns the parent Document of the Item. All Items have a parent Document instance.

int getType()

Returns a constant representing the type of the Item's value. These constants are (as

usual) declared public static final int in the Item class. Most of the item types listed below

are either obsolete (from old versions of the product) or belong to various design

elements, and as such are not interesting to most developers. They are all listed here

anyway, for the sake of completeness. The possible values are:

 • ITEM.ACTIONCD. Simple action information for Agents.

 • ITEM.ASSISTANTINFO. Agent design data.

 • ITEM.ATTACHMENT. A file attachment. Always named $FILE.

 • ITEM.AUTHORS. Item is of type Text, but the Authors flag has been set.

This means that the Item contains the names of users/groups allowed to

read and write the Document.

Java/Domino 4.6, Bob Balaban

Page 4-4

 • ITEM.COLLATION. Special character set collation data.

 • ITEM.DATETIMES. Item contains one or more date/time values.

 • ITEM.EMBEDDEDOBJECT. Item is part of an embedded OLE or other

object in the Document. Usually named $FILE.

 • ITEM.ERRORITEM. Error item (obsolete).

 • ITEM.FORMULA. Formula item (obsolete).

 • ITEM.HTML. Item contains raw HTML text, which has also (often, but not

necessarily) been rendered into Notes rich text format elsewhere in this

Document.

 • ITEM.ICON. Icon item (obsolete).

 • ITEM.LSOBJECT. Item contains LotusScript program data.

 • ITEM.NAMES. The Item is a names Item, containing user and/or group

names. If an Item is of type AUTHORS or READERS, it is also implicitly of

type NAMES.

 • ITEM.NOTELINKS. Item contains links to other Documents.

 • ITEM.NOTEREFS. Item contains the UNID of Document's parent.

 • ITEM.NUMBERS. Item contains one or more numeric values.

 • ITEM.OTHEROBJECT. Item references an object other than a file

attachment or embedded object. Not often seen.

 • ITEM.QUERYCD. Item contains a saved query for an Agent.

 • ITEM.READERS. Item is a names list containing the names of

user/groups allowed read access to the Document.

 • ITEM.RICHTEXT. Item contains rich text CD (Composite Document)

records.

 • ITEM.SIGNATURE. Item contains a signature. Always named $Signature.

 • ITEM.TEXT. Item contains text (or a text list).

 • ITEM.UNAVAILABLE. Obsolete.

 • ITEM.UNKNOWN. Item's type is unknown.

 • ITEM.USERDATA. Item is used by an API program (not Notes itself) to

store data in a format that Notes does not know about. A "bit bucket" for

some application.

 • ITEM.USERID. Item contains a user name from Notes Release 2.

 • ITEM.VIEWMAPDATA. Viewmap design information.

 • ITEM.VIEWMAPLAYOUT. Viewmap design information.

int getValueLength()

Java/Domino 4.6, Bob Balaban

Page 4-5

Returns the size in bytes of the Item's value. Does not include any overhead for Item

level data other than the value.

boolean isAuthors()

void setAuthors(boolean flag)

The Authors property is used to attach a list of users/groups to a Document to provide

Document level access control. An Authors Item is usually named $Authors, and

contains the list of people allowed to modify the Document.

Setting the Authors property to true will set the Names flag as well as the Authors

flag on the item. Setting the Authors property to false will not clear the Names flag,

however.

boolean isEncrypted()

void setEncrypted(boolean flag)

When you encrypt a Document, only the Items marked for encryption actually get

encrypted. Use the Encrypted property on the Item class to mark or unmark Items

individually.

boolean isNames()

void setNames(boolean flag)

The Names property indicates which Item(s) in a Document contain user/group names.

Setting the Authors or Readers property will also set the Names flag on the Item, but

you might want to set the Names flag alone. A few places in the Notes UI check for a

Names flag on an Item, and will let you do special kinds of address book lookups

automatically on the corresponding fields in a form. You can set the Names flag on a

form's field in the field property box when you're in form design mode.

boolean isProtected()

void setProtected(boolean flag)

Java/Domino 4.6, Bob Balaban

Page 4-6

Set this property to true if you want only users with Editor (or better) access to be able

to modify the Item.

boolean isReaders()

void setReaders(boolean flag)

Similar to the Authors property: defines the list of users/groups who have read access

to the Document.

boolean isSaveToDisk()

void setSaveToDisk(boolean flag)

This property is exceptionally useful in those applications where you want to

temporarily store data in a Document, but don't want that data written to disk when the

Document is saved. The standard mail template uses it extensively for Calendaring and

Scheduling.

If the SaveToDisk flag on an Item is true (the default), then that Item gets written to

disk when the Document is saved. If not, then the Item is simply skipped at Document

save() time.

boolean isSigned()

void setSigned(boolean flag)

As with the Encrypted property, when you sign a Document only the Items marked for

signing are included in the "digest" of the Document (see the discussion of

Document.encrypt() in Chapter 2). Use this property to set or clear the flag for an Item.

boolean isSummary()

void setSummary(boolean flag)

Only Items whose Summary property is set can appear as values in a View, because

only Items with their Summary flag set are included in the View's summary data.

Author and Reader Items need to have their Summary flags set as well; otherwise, the

Java/Domino 4.6, Bob Balaban

Page 4-7

access control features for which they were designed won't work. Setting either the

Authors or Readers property will automatically also set the Names and Summary flags.

Not all Items with the Summary flag set can appear in a View, however. Rich text

Items, for example, are explicitly excluded, as are text Items where the length of the text

exceeds 15KB. You will also be prevented from setting the Summary flag on any Item

whose size exceeds 32KB (the flag is automatically cleared, though no error is raised).

Apart from these restrictions, when you create an Item using NOI, the Summary

flag is set for you automatically.

Item Methods

String abstractText(int maxlen, boolean dropvowels, boolean usedict)

This little known method is an interesting way to shrink the contents of a text Item.

Users sometimes use it to get around the fact that NOI has a maximum string length of

32,000 characters (64,000 bytes, but when you use Unicode internally it cuts the number

of characters you can hold in a 64KB buffer down to 32,000), and many rich text Items

contain much more text than that.

The abstractText() call compresses the original text (including rich text) in an Item

by optionally dropping all vowels (if you specify true for the "dropvowels" parameter),

and by attempting to replace words with common abbreviations. It optionally does the

abbreviating using a dictionary file if you specify true for the "usedict" parameter). The

dictionary file is a simple text file, formatted with each word and its abbreviation on a

single line, separated by at least one space. The entries should be in alphabetical order.

The file is named “noteabbr.txt” (in lowercase for those operating systems that care),

and must be somewhere on your path (your execution path, not the Notes data

directory). A sample dictionary is included on the CD, you can add your own

abbreviations at will.

Java/Domino 4.6, Bob Balaban

Page 4-8

AbstractText() also automatically trims whitespace (compressing multiple spaces

into a single space, and so on), and trims punctuation where possible.

The method will perform its magic on the first 64KB of text in the Item.

void appendToTextList(String value)

void appendToTextList(java.util.Vector textlist)

This method takes a String, or Vector of Strings, and appends it to the current Item's

text or text list. The Item must by of type Text or TextList for this call to work. If the

original Item value was only a single String, then this call will convert the Item into a

text list. If the original Item contained a String or a text list, then the new String or text

list is appended to it.

boolean containsValue(Object value)

Returns true if the Item contains the value that you pass in as a parameter. The data

type of the object that you pass in doesn't need to be exactly the same as the data type of

the Item, but they must be compatible. For example,

 • Text is compatible with rich text, text, and text list.

 • Number is compatible with number and number list.

 • DateTime is compatible with DateTime or DateRange.

The rules for a match vary somewhat with data type:

 • Numbers. If the Item contains a number, the two must match exactly. If

the Item contains a number list, the input argument must be one of the

numbers in the list.

 • DateTime. If the Item contains a DateTime value, the two must match

exactly. If the Item contains a DateTime list, the input argument must be

one of the values in the list.

 • Text. If the Item contains rich text, the input String must be a substring in

the rich text stream. If the Item contains a single String, then the two must

match exactly. If the Item contains a text list, then the input argument

must exactly match one of the elements in the list (comparisons are case-

and accent-sensitive). One special case: if the Item's Name flag is set (the

Java/Domino 4.6, Bob Balaban

Page 4-9

Item contains one or more user/group names), then the match will

succeed if the input argument is a common name that either matches

exactly or matches the common part of a distinguished name in the Item.

For example, if the Item is a Name Item and contains "CN=Bob

Balaban/O=Looseleaf" and I call Item.contains() with an input argument

of "Bob Balaban", then the match will succeed.

lotus.notes.Item copyItemToDocument(lotus.notes.Document destination)

lotus.notes.Item copyItemToDocument(lotus.notes.Document destination,
String newname)

This method makes a copy of the current Item in the specified Document. The Item's

flags (Summary, Name, etc.) as well as its value are copied. By default the new Item will

keep the same name as the original, but you can also specify a new name for it. No

checking is done to see whether the destination Document already contains an Item of

that name. If it does, you will end up with a Document containing multiple Items of the

same name which, while okay for things like file attachments, is a definite no-no for

data Items.

You may have problems with this call if you use it on a RichTextItem. The problem

will arise if the source and destination Documents do not have the same font layouts:

The rich text may have different fonts in the destination than it did in the source. The

reason for this has to do with the way font information is stored. Each Document has a

special Item (named $Fonts) containing a font table. Each font name in the table is

associated with a font index, and the table's scope is the entire Document. Any font

settings contained in a RichTextItem will contain only the font's index into the table, not

the full font information. When you copy a RichTextItem from one Document to

another, the $Fonts tables are not merged. Thus, if the destination Document has a

different font table layout than the source Document (a likely occurrence, unless you're

lucky), the font indices in the copied Item will be wrong. This is a bug that is scheduled

to be fixed in Domino Release 5.0. One possible workaround is to explicitly copy the

Java/Domino 4.6, Bob Balaban

Page 4-10

$Fonts Item at the same time. That won't work, though, in cases where the Document

has more than one RichTextItem in it.

When you copy a RichTextItem, all of its embedded objects (file attachments, OLE

objects) are copied as well.

String getText()

String getText(int maxlen)

The getText() method returns a text version of the contents of the Item. It operates a bit

differently from the getValueString() call, however. Both operate the same when the

Item contains rich text, but when the Item contains a text list, getValueString() will only

return the first element of the list, while getText will return the entire list, with each

element separated by the default text list separator (usually a semicolon).

The getText() call also has an option that limits the length of the returned String to a

specified maximum. This is particularly useful when you're accessing rich text and only

want a small part of what might be a large String. The maximum length is specified in

characters (not bytes).

void remove()

Removes an Item from the current Document. If the Item is a multi-part RichTextItem

(see the discussion on Document.getFirstItem() in Chapter 3 for details on multi-part

Items), all parts are removed.

The lotus.notes.RichTextItem Class

The RichTextItem class is the only instance in NOI of class inheritance. RichTextItem

extends (the Java term for inherits from) the Item class, meaning that all of the methods

and properties that you find in an Item are also available to RichTextItem. RichTextItem

also adds some additional methods and properties that are specific to manipulating rich

text, and those are what we document in this section.

Java/Domino 4.6, Bob Balaban

Page 4-11

The RichTextItem class is not as fully functional with Notes rich text as anyone

(including the developers of the interface) would like. It will continue to evolve,

though, and it does allow you to examine certain aspects of a rich text item, and to add

new text, styles, doclinks, and file attachments to them.

RichTextItem Properties

java.util.Vector getEmbeddedObjects()

This is the only property in the RichTextItem class (other than the ones that

RichTextItem inherits from Item). The getEmbeddedObjects() call returns a Vector

containing all of the embedded objects (including file attachments, OLE/1 objects and

OLE/2 objects) in the RichTextItem. Your program does not have to be running on a

Windows machine in order to successfully instantiate EmbeddedObjects for OLE

objects—it will work on any platform. In LotusScript NOI you do have to be running on

a Windows platform in order to activate an OLE object, because in order to run an OLE

object the Microsoft OLE libraries have to be available.

Unfortunately, in Java NOI (for Domino 4.6) OLE isn't supported. See the

discussion of the EmbeddedObject class later in this chapter for all the gory details.

RichTextItem Methods

void addNewLine()

void addNewLine(int n)

void addNewLine(int n, boolean newparagraph)

This method adds a newline to the rich text stream. You can specify how many

newlines to add, and you can also specify (using the newparagraph parameter) whether

the newline(s) acts as a paragraph break or not (the default value for newparagraph is

true).

Why should you care about the distinction between newlines and new paragraphs?

Usually, you won't need to care, but you should also know that Notes does make the

Java/Domino 4.6, Bob Balaban

Page 4-12

distinction, and that a single paragraph in a RichTextItem cannot hold more than 64KB

worth of data. If you were to simply append text for a long time either without adding

newlines, or adding newlines that were not paragraph breaks, Notes would at some

point most likely insert a paragraph break for you, and the resultant rendering for that

RichTextItem in the UI might look odd. Or, you might get an exception for the

paragraph exceeding 64KB.

Using the addNewLine() call is the recommended way to insert newlines. Explicitly

including constructs such as "\n" or "\n\r" in your text stream is not recommended, as

these tend to be platform-specific values (a newline in Win95 is not the same as a

newline on the Mac, for example). The addNewLine() method is guaranteed to work

correctly for all platforms.

void addTab()

void addTab(int n)

This call adds one or more tab characters to the rich text stream. You should use this

method instead of explicitly adding constructs like "\t" to your text.

void appendDocLink(lotus.notes.Document doc)

void appendDocLink(lotus.notes.Document doc, String comment)

This call adds a Notes doclink to the specified Document instance to the current

RichTextItem. Due to a last minute problem during the development of Domino 4.6 (the

developer, yours truly, screwed up a bit), the interface to this method was not correctly

specified, and there was no time to correct the error before the product shipped. There

should have been three sets of methods here: one each for adding a link to a Document,

View and Database. In LotusScript the argument is a Variant, so passing in any of these

three object types works. But because Java is strongly typed, there's no way to fool the

call into accepting a View or a Database. Sorry.

Java/Domino 4.6, Bob Balaban

Page 4-13

The doclink is rendered as the standard link icon in the RichTextItem, and contains

a server "hint" as well to assist in link resolution later. The server hint is taken from the

input Document's parent Database. You can optionally add a comment to the link as

well, which displays in the status bar of the UI when you highlight the link.

void appendRTItem(lotus.notes.RichTextItem item)

Use this method to merge a RichTextItem (could be from the same Document or from

another one) into the current RichTextItem. Be aware, however, that you may have font

problems, as described above in this chapter for the Item.copyToDocument() method.

void appendStyle(lotus.notes.RichTextStyle style)

Adds a new RichTextStyle to the current rich text stream. It allows you to modify the

font, color, size, and so on of text as you append it to the RichTextItem. See below for

more details on the RichTextStyle class (new in Release 4.6).

void appendText(String text)

Adds text to the current RichTextItem. Text is always appended to the end of the

stream—there is no way (currently) to insert or modify text in the middle of the Item.

You should not use explicit tabs ("\t") or newlines ("\n" or "\n\r") in the text stream, as

they are not always platform portable. Instead use the addTab() and addNewLine()

methods.

lotus.notes.EmbeddedObject embedObject(int type, String classname,
String source, String name)

Adds an EmbeddedObject to the RichTextItem. EmbeddedObject instances encompass

file attachments as well as OLE objects. Unfortunately, OLE doesn't really work with

the Java NOI in Release 4.6 (should be fixed in 5.0), so this method in 4.6 is limited to

embedding file attachments. See the following section on the EmbeddedObject class for

more details on the problems with OLE.

Java/Domino 4.6, Bob Balaban

Page 4-14

The first argument to the embedObject() call is a constant which specifies the type of

embedding you want:

 • RichTextItem.EMBED_ATTACHMENT. Embed a file attachment.

 • RichTextItem.EMBED_OBJECT. Embed an OLE object.

 • RichTextItem.EMBED_OBJECTLINK. Embed a link to an OLE object.

Embedding a file attachment simply means that the file is attached to the document,

and an icon for it is rendered into the RichTextItem at the current location. The icon

doesn't look exactly the way it does when you attach a file using the Notes UI: You get

the same icon, but the name of the file doesn't appear underneath it; you get the name

following the icon. The reason for this is that the UI generates the icon/name rendering

using a graphical metafile, and the back-end NOI classes don't have the ability to do

that. Instead we just stick a generic icon in there and add the name of the file following

it.

The difference between embedding an OLE object and embedding an OLE object

link is that in the first case the entire object (and all its instance data) is attached to the

Document, whereas in the link case only a pointer to a file on disk is stored in the

Document. The advantage of a link is that it uses much less space in the Database,

however you can't really make use of a link across replicas. Since the link is to a file on

disk, everyone who accessed the link would have to have the original file in the same

location on his or her own disk, not a very easy setup to maintain.

The "classname" argument is used for OLE objects only. It allows you to specify an

application (say, 1-2-3 or Excel) and have NOI create an "empty" embedded object of

that class in the RichTextItem. If you don't want an empty embedding, then you specify

null for the classname, and provide an explicit file path for the "source" argument. The

file type is checked against the OLE registry, and if it is a file belonging to a valid OLE

application installed on your machine, then OLE will (in a future release of Java NOI,

remember, though it does work fine in LotusScript) launch the application, load the file,

Java/Domino 4.6, Bob Balaban

Page 4-15

and re-save it in your Document. You cannot specify both a class name and a source

path (when you specify a file, the class is implied).

The third argument, "name," is the name by which you want the embedded object

to be known in Domino. This is the name that the UI shows you (right-click on the

embedded object in the UI and bring up the Object Properties box), and the name you

can use in the getEmbeddedObject() call to retrieve it. It can be any string you like,

though the name should be unique within the Document.

lotus.notes.EmbeddedObject getEmbeddedObject(String name)

Locates the EmbeddedObject instance in the current RichTextItem of the name you

specify, and returns it. The name should be the user-defined name of the object, which

you can specify in the embedObject() call, or edit in the Object Properties box in the UI.

String getFormattedText(boolean striptabs, int linelength, int maxlength)

This method converts a RichTextItem to a text only representation, and allows you to

specify whether tabs should be removed (each tab is converted to one space), how long

each line should be (newlines are inserted at the end of each line), and the maximum

amount of text you want returned. If you specify 0 for the line length, a length of 80 is

used.

The maximum length that NOI will return for this call is 32,000 Unicode characters

(64KB).

The lotus.notes.RichTextStyle Class

This class is new in Release 4.6, and (finally!) adds functionality to NOI that allows you

to manipulate rich text styles when appending text to a RichTextItem. Following the

append mode of interaction with RichTextItem, you use the RichTextItem.appendStyle()

call to add a style to the rich text stream. All text appended following the style will be

rendered with that style.

Java/Domino 4.6, Bob Balaban

Page 4-16

RichTextStyle has no methods, only properties. All properties are read-write. There

are a number of constants that I've documented separately. As usual, all constants are

defined as public static final int in the RichTextStyle class, so you would reference them

using the RichTextStyle. prefix. The reason for using constants for colors and so on

(instead of, say, allowing you to specify RGB combinations) is that this was the only

way to guarantee platform portability: We wanted you to be confident that you would

get the right color on all operating systems.

Can you use any number, or are you just limited to the predefined constants? The

actual answer is that, for colors and fonts at least, you are free to use any integer you

like. The problem is, though, that only the pre-defined ones are platform portable. Be

aware that if you find some color or font that you like to use on, say, Windows, that

isn't part of the predefined set, then that's okay, but it might very well display

differently on OS/2 or the Mac.

Note that if you set a RichTextStyle into a RichTextItem and then invoke

RichTextItem.appendRichTextItem(), the incoming Item (which has its own styles in it)

will not be affected by the RichTextStyle.

You instantiate a RichTextStyle object using the Session.createRichTextStyle() call.

Style objects are scoped to the Session so that you can reuse them in multiple Databases.

Note that the RichTextStyle class was omitted from the Java Programmer's Guide

database distributed with Domino 4.6, but the LotusScript version of the interface is

documented in the online help.

RichTextStyle Constants

Color constants are listed as follows:

 • RichTextStyle.COLOR_BLACK

 • RichTextStyle.COLOR_BLUE

 • RichTextStyle.COLOR_CYAN

 • RichTextStyle.COLOR_DARK_BLUE

Java/Domino 4.6, Bob Balaban

Page 4-17

 • RichTextStyle.COLOR_DARK_CYAN

 • RichTextStyle.COLOR_DARK_GREEN

 • RichTextStyle.COLOR_DARK_MAGENTA

 • RichTextStyle.COLOR_DARK_RED

 • RichTextStyle.COLOR_DARK_YELLOW

 • RichTextStyle.COLOR_GRAY

 • RichTextStyle.COLOR_GREEN

 • RichTextStyle.COLOR_LIGHT_GRAY

 • RichTextStyle.COLOR_MAGENTA

 • RichTextStyle.COLOR_RED

 • RichTextStyle.COLOR_WHITE

 • RichTextStyle.COLOR_YELLOW

Font effects are listed as follows:

 • RichTextStyle.EFFECTS_EMBOSS

 • RichTextStyle.EFFECTS_EXTRUDE

 • RichTextStyle.EFFECTS_NONE

 • RichTextStyle.EFFECTS_SHADOW

 • RichTextStyle.EFFECTS_SUBSCRIPT

 • RichTextStyle.EFFECTS_SUPERSCRIPT

Font names are listed as follows:

 • RichTextStyle.FONT_COURIER

 • RichTextStyle.FONT_HELV

 • RichTextStyle.FONT_ROMAN

Other constants are:

 • RichTextStyle.STYLE_NO_CHANGE

 • RichTextStyle.YES

 • RichTextStyle.NO

 • RichTextStyle.MAYBE (equivalent to STYLE_NO_CHANGE)

RichTextStyle Properties

int getBold()

Java/Domino 4.6, Bob Balaban

Page 4-18

void setBold(int setting)

Retrieves or turns the bold text attribute on or off (use YES or NO), or explicitly carries

over the bold setting of the most recent style object added to the rich text stream (use

STYLE_NO_CHANGE). Default is STYLE_NO_CHANGE.

int getColor()

void setColor(int color)

Retrieves or sets the current color (use one of the color constants), or explicitly tells NOI

to carry over the most recent color setting (STYLE_NO_CHANGE). Default is

STYLE_NO_CHANGE.

int getEffects()

void setEffects(int value)

Retrieves or sets one of the special effects settings (use one of the EFFECTS constants),

or carries over the most recent setting (STYLE_NO_CHANGE). Default is

STYLE_NO_CHANGE.

int getFont()

void setFont(int font)

Retrieves or sets the font that is used for text (use one of the font name constants), or

carries over the most recent font (STYLE_NO_CHANGE). Default is

STYLE_NO_CHANGE.

int getFontSize()

void setFontSize(int size)

Retrieves or sets the font size (in points) or maintains the most recent setting

(STYLE_NO_CHANGE). Default is STYLE_NO_CHANGE. The valid values are

between 1 and 250, inclusive.

int getItalic()

void setItalic(int value)

Java/Domino 4.6, Bob Balaban

Page 4-19

Retrieves or sets the italic property of the text stream (use YES or NO) or maintains the

most recent setting (STYLE_NO_CHANGE). Default is STYLE_NO_CHANGE.

int getStrikeThrough()

void setStrikeThrough(int value)

Retrieves or sets the strike-through attribute (use YES or NO) or maintains the most

recent setting (STYLE_NO_CHANGE). Default is STYLE_NO_CHANGE.

int getUnderline()

void setUnderline(int value)

Retrieves or sets the underline attribute (YES or NO) or maintains the most recent

setting (STYLE_NO_CHANGE). Default is STYLE_NO_CHANGE.

Since this is a new class, let's do a simple example (see Listing 4.1).

Listing 4.1 Rich Text Style Example (Ex41RTStyle.java)

import java.lang.*;

import java.util.*;

import lotus.notes.*;

public class Ex41RTStyle

{

 public static void main(String argv[])

 {

 try {

 NotesThread.sinitThread();

 Session s = Session.newInstance();

 Database db = s.getDatabase("",

"book\\Ex41.nsf");

 Document doc = db.createDocument();

 RichTextItem rti =

doc.createRichTextItem("body");

// first style

 RichTextStyle style1 = s.createRichTextStyle();

Java/Domino 4.6, Bob Balaban

Page 4-20

 style1.setBold(RichTextStyle.YES);

 style1.setColor(RichTextStyle.COLOR_DARK_CYAN);

 style1.setEffects(RichTextStyle.EFFECTS_EMBOSS);

 style1.setFont(RichTextStyle.FONT_ROMAN);

 style1.setFontSize(24);

 // second style

 RichTextStyle style2 = s.createRichTextStyle();

 style2.setBold(RichTextStyle.NO);

 style2.setColor(RichTextStyle.COLOR_DARK_RED);

style2.setEffects(RichTextStyle.EFFECTS_EXTRUDE);

 style2.setFont(RichTextStyle.FONT_HELV);

 style2.setFontSize(18);

 rti.appendText("First line is default

everything");

 rti.addNewLine();

 rti.appendStyle(style1);

 rti.appendText("This text is in style 1.");

 rti.addNewLine();

 rti.appendStyle(style2);

 rti.appendText("This text is in style 2.");

// save it

 doc.save();

 } // end try

 catch (Exception e) { e.printStackTrace(); }

 finally { NotesThread.stermThread(); }

 } // end main

} // end class

If you examine the document created by this program in the Ex41.nsf database on your

CD, you'll see that we got what might be some unexpected behavior with respect to

special effects. In style1, I turned on the EMBOSS effect and used that for the second

line of text. In style2, I set the effect to EXTRUDE, which you might expect to replace

Java/Domino 4.6, Bob Balaban

Page 4-21

the EMBOSS setting, as they are both set with the same call. However, the third line of

text comes out with both EXTRUDE and EMBOSS set (you can verify this by editing the

document, bringing up the Text Properties box and moving the cursor between the two

lines).

Luckily we can get a behavior by adding a call to RichTextItem.appendStyle() using

a third RichTextStyle instance whose Effects property has been set to EFFECTS_NONE

before appending style2.

The lotus.notes.EmbeddedObject Class

As mentioned above, the EmbeddedObject class encapsulates both file attachments and

OLE objects. While the Java NOI fully supports manipulation of file attachments

through this class, unfortunately (at least in Domino Release 4.6) OLE object activation

(required for embedding and activating embedded objects and links) is not supported

in Java (it is fully supported via LotusScript). There were two reasons for this limitation

in 4.6:

 • OLE requires that each thread on which OLE calls will be made must not

only initialize OLE (no big deal there), but each thread must also

implement a Windows message pump (usually implemented as a

GetMessage()/DispatchMessage() loop). If the message pump is not run

on each thread, that thread's message queue can get backed up, and the

thread will eventually hang. This is because OLE uses cross-process

messaging to communicate between the container program (usually

Notes) and the embedded object, especially when the embedded object or

control is an EXE ("out of process") application, as opposed to a DLL ("in

process") control or Active/X. This required some nontrivial architectural

changes in Notes, and there just wasn't time to complete them before

Release 4.6 shipped.

 • The second reason had to do with the scriptability of embedded OLE

objects in Java. With LotusScript, the language has built-in OLE

Automation capabilities, just as Visual Basic does. You can get an

Java/Domino 4.6, Bob Balaban

Page 4-22

Automation "handle" (an IDispatch interface, for those of you who know

about COM interfaces and OLE) to any embedded object just by

"activating" it, which causes OLE to load and run it. Using the Automation

handle, LotusScript can transmit commands that are specific to the

embedded application (or control) through the IDispatch interface to the

object. This allows you a very nice scripting capability directly from

LotusScript. Java, however, doesn't have anything like that built in. Even

if we had been able to solve the OLE-per-thread problem in time, we

would have had to invent an entirely new IDispatch like interface in Java

in order for you to be able to manipulate embedded objects. That was just

too much work given the time we had, especially since the forthcoming

Java Beans/COM Bridge architectures that are coming out soon will solve

the Automation problem for us.

Hopefully Domino 5.0 will do a much better job with OLE. In the meantime, some of

the methods and properties continue to work in the Java NOI. You create a new

EmbeddedObject instance with the RichTextItem.embedObject() call (all

EmbeddedObjects live in a rich text item). You can also access existing

EmbeddedObjects via the RichTextItem.getEmbeddedObjects(),

RichTextItem.getEmbeddedObject() and Document.getEmbeddedObjects() calls.

EmbeddedObject Properties

String getClassName()

Returns the name of the OLE class of the embedded object, if it is an OLE object; it

returns null for other types of objects. This call works in Java NOI, on any platform, so

long as the class is known to Domino.

int getFileSize()

Returns the size of an attached file, in bytes. If you make this call on an

EmbeddedObject instance that represents an OLE object, you will probably get

misleading results. That's because OLE objects store their data in $FILE Items in a Notes

Java/Domino 4.6, Bob Balaban

Page 4-23

Document, just as file attachments do. The problem is that OLE objects most always use

more than one $FILE item, and the getFileSize() call isn't aware of that.

String getName()

Returns the user-defined name of the file attachment or embedded object. Works for

OLE objects on all platforms, if a user-defined name was supplied when the object was

embedded.

int getObject()

Returns the OLE Automation handle for an embedded OLE object. Does not work in the

Java NOI.

lotus.notes.RichTextItem getParent()

Returns the RichTextItem in which the current object is embedded/attached.

String getSource()

Returns the file name of the original file attachment or OLE object. Works on all

platforms for OLE objects.

int getType()

Returns a constant representing the kind of object that is embedded/attached, one of:

EmbeddedObject.EMBED_ATTACHMENT, EmbeddedObject.EMBED_OBJECT,

EmbeddedObject.EMBED_OBJECTLINK. These constants are identical to the ones

described above in the RichTextItem class. They were declared in both classes only for

convenience.

java.util.Vector getVerbs()

Returns a Vector containing the list of OLE "verbs" supported by the embedded object.

This call has no meaning for file attachments. Because it requires activation of the

embedded object, this call does not currently work in the Java NOI.

EmbeddedObject Methods

int activate(boolean show)

Java/Domino 4.6, Bob Balaban

Page 4-24

Activates an embedded OLE object and returns an Automation handle for it. The

argument specifies whether the OLE object should create a separate window to display

its UI ("show" set to true), or to activate in-place ("show" = false).

This method does not currently work in the Java NOI.

void doVerb(String verb)

Execute one of the supported "verbs" in the embedded object (typical supported verbs

are Open and Edit). Does not currently work in the Java NOI.

void extractFile(String filepath)

For file attachments only, make a copy of the attachment on disk, at the specified

location.

void remove()

Removes the embedded object/attachment from the RichTextItem, including its

rendering. Works for OLE objects on all platforms. You must invoke save() on the

Document in order to commit the changes to disk.

String toString()

Returns the user-defined name (if any) of the object.

The lotus.notes.DateTime Class

The DateTime class represents the internal format of a Notes date value, which includes

a date, a time, a time zone and a flag indicating whether daylight savings time is in

effect. The methods and properties of this class allow you to do several kinds of date

arithmetic (add/subtract months, days, hours, and so on), and to convert between the

internal format and Strings, or between the internal format and the LotusScript format.

It seems logical to wonder why there's no conversion between the Notes format and

the Java Date class, which actually has a lot of the same functionality (though the Java

implementation was kind of buggy, at least in Release 1.1.1). The reason is that the Java

date format is an 8-byte integer (a Java long), representing the number of milliseconds

Java/Domino 4.6, Bob Balaban

Page 4-25

since 1/1/1970 00:00:00 GMT. There just wasn't time to write a platform portable

conversion routine that would handle this data type, which is not native to all platforms

supported by Notes. In the meantime, you can accurately convert between Notes and

Java native date formats by using Strings.

The LotusScript date format (in case you were curious) follows the BASIC

convention. It is a double precision number, where the integer part is the number of

days since the reference date (12/30/1899), and the fraction is the ratio of the number of

seconds since midnight to the number of seconds in a day. Clearly, this format is not as

granular, or as accurate, as either the Java or Notes formats.

Note that as a general rule with this class, all String formatted DateTime values

follow the default formatting as set for the current location, and usually include a time

zone designation (EDT, EST, whatever). Input Strings should also follow the local

format, and can either include or omit the time zone designation.

Notes always converts a DateTime value to GMT for storage internally, though it

remembers the time zone in which the original was specified. The value is accessible

either in GMT or in the local time zone.

You create a DateTime object using the Session.createDateTime() call.

DateTime Properties

String getDateOnly()

String getTimeOnly()

Returns either the date portion or the time portion of the DateTime in String format.

String getGMTTime()

String getLocalTime()

void setLocalTime(String time)

Java/Domino 4.6, Bob Balaban

Page 4-26

Returns the current DateTime value in String format for either the GMT or local version

of the DateTime value. You can also modify the stored date value using the

setLocalTime() call.

Note that if a date value was originally specified in a time zone different from the

local time zone, the getLocalTime() and getGMTTime() calls convert that value to their

respective zones. To get the DateTime as originally specified, you can use the

getZoneTime() call.

int getTimeZone()

Returns the time zone in which the date value was originally specified. The time zone

value is usually (but not always) a number of hours plus or minus that you add to the

current time to get Greenwich Mean Time (GMT). Some zones have special values,

however.

String getZoneTime()

Returns the String version of the DateTime value for the time zone in which it was

originally specified. If the original value was not specified with a time zone different

from the current zone, then this call is equivalent to getLocalTime().

boolean isDST()

Returns true if daylight savings time is in effect for the current DateTime value.

DateTime Methods

void adjustSecond(int value)

void adjustSecond(int value, boolean localzone)

void adjustMinute(int value)

void adjustMinute(int value, boolean localzone)

void adjustHour(int value)

void adjustHour(int value, boolean localzone)

Java/Domino 4.6, Bob Balaban

Page 4-27

void adjustDay(int value)

void adjustDay(int value, boolean localzone)

void adjustMonth(int value)

void adjustMonth(int value, boolean localzone)

void adjustYear(int value)

void adjustYear(int value, boolean localzone)

The adjustXXX() methods all work essentially the same way: given the current

DateTime value, adjust it (plus or minus) by the value provided. Optionally, you can

specify that the local time zone should be taken into account in the adjustment. This

becomes important when an adjustment (either forward or backward) results in the

start and end times being on opposite sides of a Daylight Savings Time boundary. In

such a case, if you don't explicitly use true for the localzone parameter, you might end

up with unexpected results.

For example, if you started with a DateTime of March 15, 1997 2:00:00 PM and

adjusted by one month (without taking time zones into account), you'd end with a

simple adjustment to the month part of the value: April 15, 1997 2:00:00 PM, even

though Daylight Savings Time went into effect during that month.

If, however, you used the version of the adjustMonth() call that lets you specify true

for the localzone parameter, 3/15/97 2:00:00 PM (implicitly Eastern Standard Time)

becomes 4/15/97 1:00:00 PM Eastern Daylight Time. The second case is more accurate,

in the sense that the second date is exactly one month ahead of the first, while in the

first case the second date is one month and one hour ahead. There are cases, especially

in Calendaring applications, where the distinction is important.

void convertToZone(int newzone, boolean isdst)

Converts the current DateTime value to a new time zone. You can optionally specify

whether Daylight Savings Time should be considered.

Java/Domino 4.6, Bob Balaban

Page 4-28

void setAnyDate()

void setAnyTime()

Notes implements the concept of date and time value wildcards, which not all systems

do. LotusScript (and VB), for example, make no distinction between a date value with

"no time" attached to it, and that same date at midnight (0 time value). Notes does make

that distinction, and you can have a date value with no time attached, or a time value

with no date attached.

For example, you can create a date-only DateTime object by calling

Session.createDateTime("today") (or your local language equivalent keyword). This

date value is most definitely not the same as "today 00:00:00" (or any other specific

time). Likewise for time values without dates.

You can convert a DateTime value that contains both a date and a time to one that

contains only one or the other with these two methods. The setAnyDate() call converts

whatever date value is in the current object to "no date," and the setAnyTime() call

converts the current time value to "no time." Strings formatted from a DateTime object

containing one of these wildcards will simply omit the wildcard portion.

void setLocalDate(int year, int month, int day, boolean isdst)

void setLocalTime(int hour, int minute, int second, int hundredth)

These two calls are not in the LotusScript interface, as LotusScript has built-in functions

that do the same thing. They allow you to specify a date and/or time value by

providing the components of the value in integer format. The year should be a four-

digit year, to avoid unexpected results with Year 2000 default conversions. January is

always 1.

void setNow()

Store the current date/time as the value of the object.

int timeDifference(lotus.notes.DateTime t2)

Java/Domino 4.6, Bob Balaban

Page 4-29

Returns the number of seconds between the current DateTime value and the one

provided as an argument (subtracts the value of t2 from the current object's value). The

two values are first normalized to a common time zone.

String toString()

Returns the result of the getLocalTime() method.

The lotus.notes.DateRange Class

A DateRange simply represents a pair of DateTime objects, referred to as the start and

end times. It provides a convenient way to format ranges as well. You create a

DateRange object using the Session.createDateRange() call. If you use the flavor of

createDateRange that takes no arguments, you get an "empty" DateRange. If you use

the flavor that takes start and end DateTime objects, those objects are linked to the

DateRange. If you modify either DateTime object after instantiating the DateRange, the

value of the DateRange implicitly changes too. Be careful!

DateRange has no methods.

DateRange Properties

lotus.notes.DateTime getStartDateTime()

void setStartDateTime(lotus.notes.DateTime)

lotus.notes.DateTime getEndDateTime()

void setEndDateTime(lotus.notes.DateTime)

Accepts or returns the starting or ending DateTime object. If you use this technique to

set the start and end values, then the DateTime objects are linked to the DateRange.

When you (or any NOI method that takes a DateRange as input) accesses the value of

the range, the current values for the starting and ending DateTime instances are used.

Thus you can change the values of either DateTime object after linking it to the range,

and the range's value implicitly changes.

Java/Domino 4.6, Bob Balaban

Page 4-30

Be sure not to modify the value of the range unintentionally, and also be sure not to

make the starting time later than the ending time.

String getText()

void setText()

Sets or retrieves a value for the DateRange in text format. The text format for a date

range is two DateTime strings (in whatever local date/time formats are supported),

separated by a hyphen.

If you set the value of the range using a String, then any previously linked

DateTime objects are unlinked, and new ones are generated. Thus, the following code

fragment will correctly modify the ending value of the DateRange:

 DateRange dr = s.createDateRange();

 dr.setText("1/1/97 12:01 AM - 10/13/97 3:29 PM");

 DateTime enddt = dr.getEndDateTime();

 enddt.adjustDay(1);

String toString()

Returns the value of DateRange.getText().

Summary

Next, Chapter 5 continues with a discussion of still more NOI classes: Agent,

AgentContext, International, Form, and Name.

